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Abstract

A mathematical model has been developed for the analysis of a capillary column IGC experiment. An important feature in the derivation
of the model is the inclusion of Taylor dispersion effect. The model shows that Taylor dispersion effect has a very significant effect on elution
profiles at low values ofβ andγ. Taylor dispersion effect causes more spread in the longitudinal direction and the peaks become broader.
Taylor dispersion becomes more significant asβ becomes smaller. The model presented in this paper is more general than the usual IGC
m omparison
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odels and sets criteria equations to determine under what conditions the Taylor dispersion effect can be made negligible. A c
etween the present and usual IGC models above and near the glass temperature of the polymer is conducted. The analysis also
ffect of kurtosis on pulse dispersion at extremely low diffusivities.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Inverse gas chromatography is the most widely used tech-
ique for accurate measurement of polymer phase diffusion
oefficients in polymer–solvent systems. Although extensive
tudies on inverse gas chromatography exist in the literature,
one of these investigated the effect of Taylor dispersion on

he elution profiles. In all previous IGC models, the effective
xial dispersion coefficient was assumed to be independent
f the carrier gas velocity. The problem of solute dispersion

n a capillary tube was first studied by Taylor[1]. He outlined
hat under certain conditions, the solute is dispersed along the
ipe in a manner similar to diffusion from a plane source, but
ith the system co-ordinate moving with a velocity equals

o the mean velocity of the flow. The criteria under which
aylor analysis was valid could be expressed as ¯u � 7D/R
nd t�R2/(3.8)2D. He also showed that the effective ax-

al diffusion coefficient under these conditions is given by

∗ Corresponding author. Tel.: +61 2 62686057; fax: +61 2 62688276.
E-mail address:e.hamdan@student.adfa.edu.au (E. Hamdan).

Dax = R2ū2/48D. Later on, Aris[2] gave a new treatme
and removed the restriction imposed by Taylor and sho
that the effective axial diffusion coefficient is equal to the s
of molecular diffusion coefficientDand the Taylor’s effectiv
axial diffusion coefficient. Therefore, the IGC model assu
tion that the gas-phase axial dispersion is independent o
velocity is highly questionable. However, this assumption
been used earlier by Pawlisch and coworkers[3] to derive a
mathematical model applicable for analyzing IGC exp
ments. Most of the subsequent researchers interested i
have used the same model. Pawlisch and coworkers[4] have
presented improvements on their earlier model[3] to accoun
for a nonuniform polymer film thickness (eccentricity).
using the model developed in[3], Vrentas and coworke
[5] derived a simple equation for IGC data analysis at
low polymer phase diffusion coefficientsDp. In their mod-
ified model, sinceγ is typically small, it was assumed th
the axial diffusion in the gas phase has a negligible effe
the dispersion process. The reason for neglecting axial
sion effect at very low polymer phase diffusion coefficie
is because the solute molecules will spend most of the
021-9673/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2005.05.021
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diffusing slowly in the stationary phase and therefore, the re-
sults are not sensitive to the gas phase diffusion coefficient
Dg. However, neglecting the effect of molecular diffusion
would mean that the whole of the longitudinal mass transfer
is due to convection and unless the Peclect numberPeis made
very small, Taylor dispersion effect becomes significant and
should be included in the analysis. The Peclect number can
be made small by reducing column radiusR, carrier gas ve-
locity ū or increasing the diffusion coefficient of the solute in
the gas phaseDg. However, there are limits imposed on these
parameters in order to conduct experiments within reason-
ably short times and to avoid peak broadening. The purpose
of this work is to derive a mathematical model for analysing
IGC experiments which takes into consideration the depen-
dence of the gas-phase dispersion on the carrier gas velocity.
The model could be used to assess the validity of assuming
negligible Taylor dispersion effect as done previously in the
usual IGC models.

2. Capillary column model

The main assumptions and the transport equations for IGC
are the same as those used in the early study of Pawlisch and
coworkers[3]. The transport equations for the concentration
o ′
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Eqs.(1) and(2) can be written in non-dimensional form
as
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(5)

∂q

∂θ
= 1

β2

∂2q

∂η2
(6)

where

γ = Dg

ūL
, β2 = ūτ2

LDp
(7)

u(ζ) = 2(1− ζ2) (8)

The initial and boundary conditions in Eq.(3) can be re-
written in dimensionless form as

y(−∞, θ) = y(∞, θ) = 0

y = δ(x), θ = 0

y = q, η = 0(
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f the solute in the gas phasec and in the polymer phasec
an be written as
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The initial and boundary conditions are given by Vren
5] as

c(r,∞, t) = c(r,−∞, t) = 0

c′ = 0, t = 0
∂q

∂r
= 0, r = R+ τ

c(r, z, t) = δ(z)c0, t = 0

c(r, z, t) = c′(r, z, t)
K

, r = R

Dg
∂c

∂r
= Dp

∂c′

∂r
, r = R

∂c

∂r
= 0, r = 0

(3)

By introducing the following non-dimensional variable

= cL

c0ū
, x = z

L
, η = (r − R)

τ

= ūt

L
, q = c′L

c0Kū
, ζ = r

R
(4)
∂y

∂ζ
= 0, ζ = 0

The concentration of the solute in the gas phasey and the
xial flow velocityu can be expressed in terms of their a
veraged values (¯y and ū) and fluctuations from the ar
verages (˜y and ũ) as

= ȳ + ỹ (10)

= ū+ ũ (11)

Substituting(10) into (5) gives
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In the usual IGC models, the radial variation in the
hase concentrationy is assumed to be so small such t

˜ � ȳ. In this case,y = ȳ is used as an approximati
hich yields the plug flow model[3]. Taking spatial ave
ge of Eq.(12)and making use of the boundary condition
q. (9) and the property of spatial averaged fluctuations

˜ = ũ = 0 (13)

ields

∂ȳ
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αβ2

∂q(0)

∂η
(14)



146 E. Hamdan et al. / J. Chromatogr. A 1078 (2005) 144–151

where

α = R

Kτ
(15)

The new quantity(ũỹ) is the additional contribution to
dispersion caused by velocity fluctuation from the plug
flow model. It is the axial component of the dispersion
that represents the flux associated with the correlation
between the fluctuations in velocity, ˜u, and concentration,
ỹ, relative to their depth-averaged values. This additional
term was neglected in the usual IGC models due to the
radial uniformity assumption. The next step is to obtain an
expression for ˜y in terms ofȳ and calculate(ũỹ).

Subtracting Eq.(14) from Eq.(12), yields
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It is convenient to transform(16)to a new coordinate sys-
tem,x1 = x− ūθ, moving with the average flow velocity. In
terms of the new coordinate system, Eq.(16) is written as
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ỹ =
∞∑
m=1

J0(βm, ζ)

N(βm)
T̄ (21)

The integral transform of Eq.(18) is
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The solution of Eq.(22) is given in[6] as

T̄ =
∫ θ

t′=0

∫ ∞

ω=−∞
ḡ(x1, θ, ζ)

[4πγ(θ − t′)]1/2
exp(λθ)

× exp
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]
dwdt′ (24)

Following [7], the integral can be approximated by ex-
pandingḡ(x , θ, ζ) aroundw = x and t= θ and retaining
o

T
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In his study for dispersion of solute in solvent throug
ube, Taylor[1] concluded that provided a sufficiently lo
ime has elapsed after solute injection, the rate at which
urbations in concentration profile are created is mainly
rolled by the balance between perturbations in concentr
rofiles created by differential advection, term III, and
issipation of the perturbations by lateral diffusion, term
owever, during the early stages of dispersion, the mean
entration gradients are very large and term II become
ortant. At a relatively large time, the term II becomes sm
nd is neglected. In this case, Eq.(17)can be re-written as
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here
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Eq. (18) is solved using the integral transform techni
6]. Using the integral transform pair
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1 1
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∂x2
1

)(
1 − (1 + λθ) e−λθ

λ2

)
(25)

Using Eq.(21), one can find
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Substituting Eq.(26) into Eq. (14) yields the final mea
olute concentration equation
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For large time analysis, Eq.(27) reduces to

∂ȳ
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∂x2
1∂θ

−
( ∞∑
m=1

γ
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The capillary column investigated by Taylor[1] is differ-
ent from that used in the IGC where a thin polymer film is
coated on the inner wall. Since Taylor assumed that the trans-
fer of solute along the tube by molecular diffusion is small
compared with that produced by convection, the first term on
the RHS of Eq.(28)was neglected. As there is no polymer in
Taylor’s case, there is no second term on the RHS of Eq.(28).
Hence, Taylor’s case is a special case of the general Eq.(28)
containing only the first two terms on the LHS. Taking the
Laplace transform of Eq.(28)and neglecting the fourth term
(see criterion Eq.(40)) yields in terms of a fixed co-ordinate
s
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Following [6], the general solution of Eq.(29)atx= 1 is

ȳ0 = exp(1/2A0) exp[−(1/2A0)(1 + 4A0G(s))1/2]

(1 + 4A0G(s))1/2
(36)

The value of the constant 1/48 inb0 (Eq.(34)) is equivalent
to that obtained by Taylor in[1]. Thus, the present model
retains the Taylor dispersion effect which is made neligible
in the usual IGC models.

The case where Taylor dispersion effect is neglected, can
be retained from Eq.(25) by using Taylor expansion of the
exponential function and settingλ= 0. In this case, Eq.(25)
yields

T̄ = θḡ− 1

2
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Substituting Eq.(37) into Eqs.(26) and(27) and taking
the Laplace transform of the resulting equation yieldsA0 =γ.
Clearly, settingA0 =γ in Eq.(36)yields the Laplace solution
of the usual IGC model. Eq.(28) can be re-written in terms
of the fixed coordinate system as
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Evaluting the terms between brackets in Eq.(31)gives

0 = b0 − b1s+ γ (33)
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By examining the order of magnitudes of the terms in
38), it is clear that the second term in IV is small compa
ith the first term when
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hereL* is the length of the capillary column between po
here the concentration of the solute is 1% and 99% o

ull concentration, noramlised by the length of the colu
8]. Criterion Eq.(40) is much easier to meet than criter
q. (39). In most practical cases, criteria Eqs.(39) and(40)
re both satisfied so that Eq.(38)can be reduced to
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here

∗ = b0 + γ = A0 + b1s (42)

s the effective axial diffusion coefficient in the gas phas
One can notice that even with these assumptions, th

ulting Eq.(41), still contains the Taylor dispersion term,b0,
hich is made negligible in the usual IGC models. As sh
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in [3], the first and second moments of ditribution obtained
using the transform solution Eq.(36)are

µ1 =
(

1 + τK

R

)
tc (43)

µ2 =
(

4Kτ3

3RDptc
+ 2γ∗
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1 + τK

R

)2
)
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An alternative approach to deriving Eq.(41)is to use Tay-
lor’s assumptions in[1]. In this case, Eq.(17)can be written
as

ũ
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Integrating (46) and making use of boundary condition
∂ỹ/∂ζ|∂=0 = 0, ỹ can be expressed in terms of ¯y as
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ζũdζ
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Since we are only interested in evaluating the term
∂/∂x1(ũỹ), the constant of integration and the second term
to the right hand side of Eq.(45) are independent ofx1 and,
therefore, were neglected in the analysis. Using Eq.(46),

∂/∂x1(ũỹ) can be evaluated easily and the final result is

∂

∂x1
(ũỹ) = 1

48γ(L/R)2
∂ȳ

∂x1
(47)

Substiuting Eq.(47) into Eq.(14), yields Eq.(41).

3. Results and discussion

The results presented in this study are the solutions of
Eq. (41) with criteria Eqs.(39) and (40) being both satis-
fied. The values ofα (0.52) andβ (0.01–10) are the same as
those used by Surana and coworkers[9] while the effect of
reducing the gas phase diffusion coefficientγ from 2.8e−5
to 2.8e−8 is examined. Whenγ is sufficiently high such as
γ = 2.8e−5 in Fig. 1a, convective diffusion is so slow that
molecular diffusion controls dispersion and Taylor disper-
sion effect is negligible. Reducingγ to 2.8e−6, as shown in
Fig. 1b, increases the effect of Taylor dispersion on solute
dispersal and its effect becomes more pronounced asDp be-
comes larger orβbecomes smaller such asβ = 0.01. Although
the value ofβ = 0.01 is below the range 0.03–5 recommended
by Surana et al[9], it was used here to show that Taylor dis-
persion could affect the elution profiles whenβ is sufficiently

F
(

ig. 1. Comparison of the elution profiles of the present (*) model and the us
a)γ = 2.8e−5; (b)γ = 2.8e−6; (c)γ = 2.8e−7; and (d)γ = 2.8e−8.
ual IGC models forα= 0.52,L/R= 100,000 and variousβ values asγ is reduced:
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small andγ is within the range 10−5–10−7 usually used in
IGC experiments. Whenγ is reduced further to 2.8e−7 in
Fig. 1c and to 2.8e−8 in Fig. 1d, Taylor dispersion effect
becomes more significant over a wide range of lowβ values
(0.03–0.05) and a significant difference is observed between
the present and usual IGC model solutions. In this case, the
dispersion process is controlled by the combination of molec-
ular diffusion and Taylor dispersion effect.Fig. 1c and d also
show the effect of varyingβ on the elution profiles. Assigning
higher values forβ tend to broaden the elution profile while
the symmetry and peak maximum position are unaffected.
These results also show that for the sameβ value, the ef-
fect of Taylor dispersion becomes significant asγ is reduced,
causing more dispersion in the axial direction and broader
peaks. For a givenγ, asβ becomes smaller, Taylor disper-
sion effect on the elution profiles increases and peaks become
broader.

The influence ofL/R ratio on the Taylor dispersion effect
and the elution profiles can be seen by comparingFig. 1c for
L/R= 100,000 andFig. 2 for L/R= 500,000. It is quite clear
fromFig. 1c andFig. 2that increasingL/Rreduces Taylor dis-
persion effect and the elution profiles obtained by the present
model approach those obtained using the IGC model devel-
oped in[3]. Results fromFigs. 1 and 2indicate that the effect
of Taylor dispersion depends on the time the solute spends in
t mo-
b e
s e, the
e The
p ce
t
i lative
t s will
d olute
a rature
o
c alue
o

F d the
u
v

In the case of low polymer phase diffusion coefficients
(i.e., highβ) as encountered near the glass temperature of
the polymer, reducingγ does not affect the results to a large
extent, as shown inFig. 3a forγ = 2.8e−5 and inFig. 3b for
γ = 2.8e−7, withβ = 3, 5 and 10. At very low polymer and gas
diffusivities, Taylor dispersion effect becomes very signifi-
cant and neglecting it will lead to overestimated values for
polymer phase diffusion coefficients. Vrentas and cowork-
ers [5] proposed a modified IGC model to be used at very
low polymer phase diffusion coefficients whenβ exceeds the
upper limit of 5 and the sensitivity of the usual IGC model
is lost [9]. Fig. 4a shows a comparison between the present
model solutions at different values ofγ∗ and those obtained
using Vrentas[5] modified model where the axial diffusion
in the gas phase is neglected. In the early model developed by
Pawlisch and coworkers[3] and the modified model proposed
by Vrentas[5], Taylor dispersion effect was not taken into
consideration (i.e.,γ∗ =γ in [3] andγ∗ =γ = 0 in [5]). In the
present model,γ∗ is equal to the sum of the non-dimensional
axial molecular diffusionγ and Taylor dispersion coefficient
b0. Asγ∗ decreases, the theoretical curves obtained using the
present model approach those of Vrentas[5] modified model
(cf. Fig. 4a). To use the modification proposed by Vrentas[5],
Taylor dispersion should be made small or negligible. Taylor

Fig. 3. Comparison of the elution profiles of the present (*) model and the
usual IGC models at very low polymer-phase diffusion coefficients (i.e.,
largeβ) for α= 0.52,L/R= 100,000 asγ is reduced: (a)γ = 2.8e−5; and (b)
γ = 2.8e−7.
he stationary phase relative to the time it spends in the
ile phase. Large values ofβ (very lowDp) means more tim
pent by the solute in the stationary phase and therefor
ffect of Taylor dispersion on the elution profiles is less.
artition coefficientK is proportional to the solute residen

ime in the stationary phase. Increasing the value ofK will
ncrease solute residence time in the stationary phase re
o the time it spends in the gas phase and therefore, thi
ecrease the effect of Taylor dispersion. For a given s
nd stationary phase, a change in the column tempe
r column diameter2Rand/or film thicknessτ will cause a
hange in the retention time of the solute and thus the v
f K [10].

ig. 2. Comparison of the elution profiles of the present (*) model an
sual IGC models forα= 0.52,γ = 2.8e−5, L/R= 500,000 and variousβ
alues.
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Fig. 4. Comparison of the elution profiles of the present (*) model at very low
polymer-phase diffusion coefficients (i.e., largeβ) for α= 1,β = 7, and var-
ious values ofγ∗ with the modified model[5] for γ∗ = 0: (a)L/R= 100,000;
and (b)L/R= 500,000.

dispersion may significantly affect the elution profiles at large
β and smallγ values. Increasing theL/R ratio from 100,000
in Fig. 4a to 500,000 inFig. 4b reduces Taylor dispersion
effect and Vrentas[5] modified model becomes applicable
over a wider range ofγ* values. The results inFig. 4clearly
demonstrate the effect of Taylor dispersion on the range of
applicability of Vrentas[5] modified model which is usually
used whenβ is large.

3.1. Kurtosis effect

In the usual IGC experiment,γ lies in the range 10−5–10−7

or in special cases could be set to the order 10−8 (for example,
nitrogen as a carrier gas with Butane as a solute). Therefore,
in most practical cases in IGC, criterion Eq.(39) is met.
To the best of the authors knowledge, cases of extremely
low gas phase diffusivities below the practical range of IGC
(10−5–10−7) has not been studied as such cases could be rare
or do not exist. Mathematically speaking, at extremely low
values ofγ and when criterion Eq.(39)is not met, the contri-
bution from the second term in bracket IV of Eq.(38)becomes
significant. As expected from Eq.(35), extremely low diffu-
sivities will increase the value ofb1 and in turn, will reduce
the value of the effective axial diffusion coefficientA0 in Eq.

Fig. 5. Effect of Kurtosis on the elution profiles at extremely low diffusivities
for α= 0.52,L/R= 10,000,γ = 2.8e−9 andβ = 5.

(33). Forα= 0.52,L/R= 10,000,γ = 2.8e−9, β = 5 and with
L∗ being less than 1, criterion Eq.(39) is not satisfied. The
two elution profiles calculated under this condition by using
A0 (Eq.(33)) andγ∗ (Eq.(42)) are shown inFig. 5. It is clear
that there is a significant error in the elution profile calculated
usingγ* when criterion Eq.(39) is not met. This result can
be explained by considering the moments of concentration
distribution. Without going into details of moment analysis,
it is quiet clear that the contribution of the termb1 ∂

3ȳ/∂x2
1∂θ

will only appear when considering the fourth moment
(‘Kurtosis’), i.e.(∂/∂θ

∫ +∞
−∞ xn1 (∂2ȳ/∂2x1) = 0; n < 4).

As shown by Chatwin[11], the eventual decay of the
skewness in the case of dispersion in Poiseuille pipe flow
is at a ratet−1/2. Therefore at large times, it is expected
that the significant difference between elution curves at
extremely low diffusivites is mainly attributed to kurtosis
effect.

4. Conclusion

A general model has been developed which takes into ac-
count the effect of Taylor dispersion on pulse dispersal in a
typical IGC experiment. It can be used effectively to check
the validity of assuming solute dispersion to be indepen-
dent of carrier gas velocity. The present model shows that
n rsion
h
l ,
k sion
t gh
v -
t ffect
n

5

A )
b

ear the glass temperature of polymers, Taylor dispe
as a negligible effect over a wide range ofγ. At extremely

ow diffusivities and when criterion Eq.(39) is not satisfied
urtosis effect becomes significant and the axial diffu
erm given by Eq.(33) should be used. In general, for hi
alues ofDp (low β), largerL/R ratios than previously an
icipated should be used to make Taylor dispersion e
egligible.

. Nomenclature

0 effective axial diffusion coefficient defined in (33
0 a parameter defined in(34)
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b1 a parameter defined in(35)
c concentration of the solute in the gas phase
c′ concentration of the solute in the polymer phase
c0 strength of input pulse
D molecular diffusion coefficient
Dax Taylor’s effective axial diffusion coefficient
Dg diffusion coefficient of the solute in the gas phase
Dp diffusion coefficient of the solute in the polymer

phase
g a term defined in(19)
ḡ a term defined in(23)
J0 Bessel function of the zero kind
J1 Bessel function of the first kind
K partition coefficient
L column length
L∗ dimensionless characteristic length defind by Taylor

[8]
N(βm) [= 2/J2

0(βm)]
Pe Peclect number (= Rū/Dg)
q dimensionless concentration of the penetrant in

polymer phase
r radial co-ordinate
R capillary radius
s Laplace variable
t time
t residence time of the carrier gas (= L/ū)
t
T

u
u

u

w

x
x the

y
y

ỹ dimensionless fluctuation of solute concentration
ȳ0 Laplace transform of ¯y
z axial coordinate

Greek symbols
α dimensionless group defined in Eq.(15)
β dimensionless group defined in Eq.(7)
βm eigenvalues ofJ1(βm) = 0
δ dirac delta function
ε dimensionless group (KRDP/τDg)
γ dimensionless group (gas phase diffusion coeffi-

cient) defined in Eq.(7)
γ∗ effective axial diffusion coefficient defined in Eq.

(42)
η dimensionless radial group defined in Eq.(4)
λ dimensioless variable defined in Eq.(23)
ζ dimensionless radial co-ordinate in Eq.(4)
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