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Abstract

A mathematical model has been developed for the analysis of a capillary column IGC experiment. An important feature in the derivation
of the model is the inclusion of Taylor dispersion effect. The model shows that Taylor dispersion effect has a very significant effect on elution
profiles at low values op andy. Taylor dispersion effect causes more spread in the longitudinal direction and the peaks become broader.
Taylor dispersion becomes more significantasecomes smaller. The model presented in this paper is more general than the usual IGC
models and sets criteria equations to determine under what conditions the Taylor dispersion effect can be made negligible. A compariso
between the present and usual IGC models above and near the glass temperature of the polymer is conducted. The analysis also describes
effect of kurtosis on pulse dispersion at extremely low diffusivities.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction Dax = Ru?/48D. Later on, Aris[2] gave a new treatment
and removed the restriction imposed by Taylor and showed
Inverse gas chromatography is the most widely used tech-that the effective axial diffusion coefficient is equal to the sum
nique for accurate measurement of polymer phase diffusion of molecular diffusion coefficieri and the Taylor’s effective
coefficients in polymer—solvent systems. Although extensive axial diffusion coefficient. Therefore, the IGC model assump-
studies on inverse gas chromatography exist in the literature.tjon that the gas-phase axial dispersion is independent of flow
none of these investigated the effect of Taylor dispersion on velocity is highly questionable. However, this assumption has
the elution profiles. In all previous IGC models, the effective been used earlier by Pawlisch and coworK8iso derive a
axial dispersion coefficient was assumed to be independentmathematical model applicable for analyzing IGC experi-
of the carrier gas velocity. The problem of solute dispersion ments. Most of the subsequent researchers interested in IGC
in a capillary tube was first studied by Tay[a}. He outlined  have used the same model. Pawlisch and cowofkgtsave
that under certain conditions, the solute is dispersed along thepresented improvements on their earlier mgdgto account
pipe in a manner similar to diffusion from a plane source, but for a nonuniform polymer film thickness (eccentricity). By
with the system co-ordinate moving with a velocity equals using the model developed {8], Vrentas and coworkers
to the mean velocity of the flow. The criteria under which [5] derived a simple equation for IGC data analysis at very
Taylor analysis was valid could be expressed as 7D/R low polymer phase diffusion coefficienBy. In their mod-
andt>> R%/(3.8FD. He also showed that the effective ax- ified model, sincey is typically small, it was assumed that
ial diffusion coefficient under these conditions is given by the axial diffusion in the gas phase has a negligible effect on
the dispersion process. The reason for neglecting axial diffu-
* Corresponding author. Tel.: +61 2 62686057; fax: +61 2 62688276,  Sion effect at very low polymer phase diffusion coefficients
E-mail addresse.hamdan@student.adfa.edu.au (E. Hamdan). is because the solute molecules will spend most of the time
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diffusing slowly in the stationary phase and therefore, there-  Eqgs.(1) and(2) can be written in non-dimensional form
sults are not sensitive to the gas phase diffusion coefficientas

Dgy. However, neglecting the effect of molecular diffusion 52 IN2T1 9 / 9

would mean that the whole of the longitudinal mass transfer D (g) = y—y + y(—) [—— ({_y)] (5)
is due to convection and unless the Peclect nurRbsrmade 0 ox R coc\"og

very small, Taylor dispersion effect becomes significant and g 1 32q

should be included in the analysis. The Peclect number can@ = ? 3_172 (6)
be made small by reducing column radRiscarrier gas ve-

locity u or increasing the diffusion coefficient of the solute in Where

the gas phasey. However, there are limits imposed on these Dg ,  ur?

parameters in order to conduct experiments within reason-¥ = . B = D (1)
ably short times and to avoid peak broadening. The purpose P

of this work is to derive a mathematical model for analysing 4(7) = 2(1— 4_2) (8)

IGC experiments which takes into consideration the depen- o » .

dence of the gas-phase dispersion on the carrier gas velocity. 1N€ initial and boundary conditions in Eg) can be re-
The model could be used to assess the validity of assumingWritten in dimensionless form as

negligible Taylor dispersion effect as done previously in the y(—oo, 8) = y(oo, ) =

usual IGC models. y = §(x), 0=0
y=4q, n=0
2. Capillary column model <8y> 8(8_‘])
%/ O 9
The main assumptions and the transport equations for IGC 4 = 0, =0
are the same as those used in the early study of Pawlisch andgq
coworkerd3]. The transport equations for the concentration 3_n =0, n=1
of the solute in the gas phaseand in the polymer phasg 3y
can be written as — =0, =0
le
2
dc + o ( (1)2) ac _ D [E n 19 (rﬁﬂ 1) The concentration of the solute in the gas phaaed the
or R/ ) oz 9z2  ror \ or axial flow velocityu can be expressed in terms of their area
o/ 19 /7 ac averaged valuesy(and u) and fluctuations from the area
— =Dy == (r= 2 averagesy("and i) as
ot p|:r or <r8r>:| ) _g N)( )
- " . y=y+y (10)
The initial and boundary conditions are given by Vrentas _
[5] as u=u-+1u (11)
o(r, 00, 1) = c(r, —00, 1) = 0 Substituting(10) into (5) gives
¢'=0, 1=0 dy 9y Ay ¥y _ (Y
g _ R 6 "o T ax T T <8x2 2
=
ar L\2[1 & [ o5
c(r, z, 1) = 8(2)co, t=0 + y(;) |:— % (§8—>i| (12)
d(rz,1) ®) ¢ % ¢
c(r,z, 1) = ——2, r=
/K In the usual IGC models, the radial variation in the gas
g% = Dp de , Fr=R phase concentrationis assumed to be so small such that
ar or y < y. In this case,y =y is used as an approximation
% =0, r=0 which yields the plug flow modgRB]. Taking spatial aver-
age of Eq and making use of the boundary conditions in
or f Eq(12)and maki f the bound ditionsi
By introducing the following non-dimensional variables ~ Ed-(9) and the property of spatial averaged fluctuations
cL z (r — R) Yy=u=0 (13)
= — X = -, 7’] =
cou L T yields
_ dy 3y ¥y - 2 d(0)
t 'L —tu==y—5— —@)+——— 14
ezuz qch)—m g:% @ w0 e Va2 )T o (14)
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where % Jo(n £) 21)
R
o= — (15) el N(Bm)
Kt
e " I The int It f f Eq18)i

The new quantity(izy) is the additional contribution to e integral transform of Eq18)is
dispersion caused by velocity fluctuation from the plug 7 _ 2T
flow model. It is the axial component of the dispersion —; + AT — v i 8(x1,0,¢) (22)
that represents the flux associated with the correlation 1
between the fluctuations in velocity, and concentration,  \yhere
y, relative to their depth-averaged values. This additional
term was neglected in the usual IGC models due to the 1N\2 3y !
radial uniformity assumption. The next step is to obtain an A = y(ﬂm ) , g(x1,0) = ™ / Jo(Bm, Q)ude
expression foly in terms ofy and calculatéiiy). 0

Subtracting Eq(14) from Eq.(12), yields (23)
9y | _dy 8%y L\%[1d [/ 8y
0 T4 T Va2 T\ R cac ga_; The solution of Eq(22) is given in[6] as

0 (= 0y 2 9q(0)
prl (O R il o g [ [T 8D e
" 1=0 Jomoo [y (0 — )2

Itis convenient to transforrfl6)to a new coordinate sys- ( x1 — w)? ,

tem,x; = x — uf, moving with the average flow velocity. In x &Xp| - 4 (9 1) dhw dl (24)

terms of the new coordinate system, EL) is written as

BN 325 19 (/9
B () [H ()]« sp@-m

(17)

In his study for dispersion of solute in solvent through a

tube, Taylor[1] concluded that provided a sufficiently long

time has elapsed after solute injection, the rate at which per-
turbations in concentration profile are created is mainly con-
trolled by the balance between perturbations in concentration

profiles created by differential advection, term 1ll, and the
dissipation of the perturbations by lateral diffusion, term I.

Following [7], the integral can be approximated by ex-
pandingg(x1, 0, ¢) aroundw = x; andt=6 and retaining
only first order terms iny) — x1) and ¢ — 6) to yield

T 1—e ™ g 0%g
S\ 0 Vox?

1—(1+ 16) e“’)

22
(25)
Using Eq.(21), one can find
T~~~y = ~] no» —
@)=y Mg 26)

N(Bm)

m=1

Substituting Eq(26) into Eq. (14) yields the final mean

However, during the early stages of dispersion, the mean con-Solute concentration equation

centration gradients are very large and term Il becomes im-
portant. At a relatively large time, the term || becomes small

and is neglected. In this case, Kfj7) can be re-written as

3y ¥y 19 ( 05
(5 2 ()] st s
where

~dy 2 9q(0)
8(x1,6,8) = — a2 (19)

Eq. (18) is solved using the integral transform technique
[6]. Using the integral transform pair

_ 1
T / CIo(Bms )FC (20)
0

ﬁJO(,Bm» {)

3y 0 (1 e‘w) )
ay ¢Jo(Bm» Q)udg
% <mZ:1 N(Bm) /
025 | (TP d) (1 (Lt a)e ™
a2t (ﬂ; N (Bn) ( A2 )
33y = 1Jo(Bm ©)
/ ¢Jo(Bm, )ud{) 239 <’;VW

_ —\0
x (ﬂ> f cJo(ﬂm,q)udg) B—Z
X1

X

)\2
%y 2 9q(0)
=y—5+ 5 —— (27)
oxy  ofc Oy
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For large time analysis, EQR7) reduces to
1 1 P2y
N s Oude | —=
(A)/o &Jolfn: €)i c) ™
%y
( )f CJo(ﬂm,g“)udg) 20
%) m < 1 ) /1 i 34}_)
. CN(Ba) \A2 Jo(Bm. Oiide | —
(mzzly N(Bm) 22/ Jo $Jo(Bm, Oudg ax‘11

Py, 2 ()

0y, 2 ) 28
Vo2 T ap? on (28)

IZJO(.Bm» {)

a_y . o0
30 (n;l N(Bm)
N (Z 1Jo(Bm> €)

2= N(Bw)

The capillary column investigated by Tayldi is differ-
ent from that used in the IGC where a thin polymer film is

147

Following [6], the general solution of E¢R9) atx=1is

exp(1/2A0) expl—(1/2A0)(1 + 440G (s))"/?]
(14 4A0G(s))Y?

The value of the constant 1/48bp (Eq.(34)) is equivalent
to that obtained by Taylor ifil]. Thus, the present model
retains the Taylor dispersion effect which is made neligible
in the usual IGC models.

The case where Taylor dispersion effect is neglected, can
be retained from Eq(25) by using Taylor expansion of the
exponential function and setting= 0. In this case, E(25)

yields
1,(% 9°g
Z6? —y—
2 30 ax2

Substituting Eq(37) into Eqgs.(26) and(27) and taking

5= (36)

T =63 — (37)

coated on the inner wall. Since Taylor assumed that the trans-the Laplace transform of the resulting equation yidigs y.

fer of solute along the tube by molecular diffusion is small

Clearly, settingdo =y in Eq.(36)yields the Laplace solution

compared with that produced by convection, the first term on of the usual IGC model. E¢28) can be re-written in terms

the RHS of Eq(28) was neglected. As there is no polymer in
Taylor's case, there is no second term on the RHS of 2R).
Hence, Taylor’s case is a special case of the genergPBy).
containing only the first two terms on the LHS. Taking the
Laplace transform of Eq28) and neglecting the fourth term
(see criterion Eq(40)) yields in terms of a fixed co-ordinate
system

82_0 _850 o
—Ao Ty i+ G =80 .
where
- (30)
(S TED (1 [P o
o (n;_ N(Bn) (A)fo £Jo(Bm ¢) d;)
_ ad @Jo(Bm ¢) <i> 1 .
(,,; N(Bnm) \2? foé“Jo(ﬂm,;) d;) +y
(31)
and
] (32)

G(s) =s+ of tan h(B+/s)

Evaluting the terms between brackets in B1) gives

Ap=bo—b1s+y (33)
where
1
=— (34)
48y(L/R)
and
1
bhh=——"——¥— 35
1T 7202(L/R)* 59

of the fixed coordinate system as

a [ 9%y 2 [ ydy\ oy
by —b ) +=2
39<y+ 32> 082<y+,\ax2>+ax
——
\Y) \%
2y 2 9q(0)
=Viot (38)
ox afs  on

By examining the order of magnitudes of the terms in Eq.
(38), it is clear that the second term in 1V is small compared
with the first term when

N4
720(;/L*)2<E> >1 (39)
and the second term in V is small compared with the first
term when

2
L
L*2<ﬂmﬁ) > 1

whereL" is the length of the capillary column between points
where the concentration of the solute is 1% and 99% of the
full concentration, noramlised by the length of the column
[8]. Criterion Eq.(40) is much easier to meet than criterion
Eq. (39). In most practical cases, criteria E§39) and(40)

are both satisfied so that E®8) can be reduced to

(40)

dy oy L%y _ 2 (0) 41)
0 ax x2  af? I

where

y* =bog+y = Ag+ byis (42)

is the effective axial diffusion coefficient in the gas phase.
One can notice that even with these assumptions, the re-

sulting Eq.(41), still contains the Taylor dispersion tertw,

which is made negligible in the usual IGC models. As shown
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in [3], the first and second moments of ditribution obtained 5/5x,(%7) can be evaluated easily and the final result is
using the transform solution E¢36) are

K S \Y) = o o
H1= (l + %) te (43) dx1 48y(L/R)? 0x1
Substiuting Eq(47)into Eq.(14), yields Eq.(41).
4K 3 K\ 2
= 2y (14— ) ) 7 44
o (SRDptc+y(+R>>c (44)
3. Results and discussion
An alternative approach to deriving Hg1)is to use Tay-
lor's assumptions ifil]. In this case, Eq17) can be written The results presented in this study are the solutions of
as Eq. (41) with criteria Egs.(39) and (40) being both satis-
— 2 ~ fied. The values o (0.52) andB (0.01-10) are the same as
ﬁa—y = <£> [EE <§8_y>] — iz aq_(O) (45) those used by Surana and cowork@jswhile the effect of
dx1 R fog\"o¢ o o reducing the gas phase diffusion coefficigrrom 2.8e-5
Integrating (46) and making use of boundary condition t0 2.8e-8 is examined. Whe is sufficiently high such as
3y/3¢|a—0 = 0, ¥ can be expressed in termsyls y=2.8e-5 in Fig. 1a, convective diffusion is so slow that
) molecular diffusion controls dispersion and Taylor disper-
. 1 dy ¢ ¢ s | ae 46 sion effect is negligible. Reducingto 2.8e-6, as shown in
y= W(L/R)? axy /0 ? /0 fuat | at (46) Fig. 1b, increases the effect of Taylor dispersion on solute

dispersal and its effect becomes more pronouncedjdze-
Since we are only interested in evaluating the term comeslarger g becomessmaller suchgs 0.01. Although
9/ax1(ity), the constant of integration and the second term the value of8 = 0.01 is below the range 0.03-5 recommended
to the right hand side of E¢45) are independent o, and, by Surana et gB], it was used here to show that Taylor dis-

therefore, were neglected in the analysis. Using &6), persion could affect the elution profiles whers sufficiently
12.00 25.00
a=0.52 a =052
7= 2.80E-05 7= 2.80E-06
| L/R = 1.0E+05 L/R =1.0E+05
10.00 20.00
8.00
15.00 1
y 6.00 v
10.00
4.00
5.00
2.00 A
0.00 7 T ; T T T 0.00 T T : - T
4.50 4.60 4.70 4.80 4.90 5.00 5.10 5.20 4.50 4.60 4.70 4.80 4.90 5.00 5.10 5.20
(a) 6 (b) 6
9.00 9.00
a =0.52 a =0.52
=2, =2.80E-08
8.00; {/R2=82:—:Zos 8.001 T = 108405
7.00 4 7.00+
6.00 1 6.001
_ 5.00 5.00
y y
4.00 4.00
3.00 3.00
2.00 2.00
1.00 1.00
0.00 " ; . - - 0.004 . . . -
4.50 4.60 4.70 4.80 4.90 5.00 5.10 5.20 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2
() 6 (d) 6

Fig. 1. Comparison of the elution profiles of the present (*) model and the usual IGC modeks 8052,L/R= 100,000 and varioug values ag is reduced:
(a)y=2.8e-5; (b) y =2.8e-6; (c) y =2.8e-7; and (d)y =2.8e-8.
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small andy is within the range 10°-10~7 usually used in In the case of low polymer phase diffusion coefficients
IGC experiments. Whep is reduced further to 2.8€7 in (i.e., highg) as encountered near the glass temperature of
Fig. 1c and to 2.8e-8 in Fig. 1d, Taylor dispersion effect  the polymer, reducing does not affect the results to a large
becomes more significant over a wide range of owalues ~ €xtent, as shown ikig. 3a fory = 2.8e-5 and inFig. 3o for
(0.03-0.05) and a significant difference is observed betweeny =2.8e-7, withg =3, 5and 10. At very low polymer and gas
the present and usual IGC model solutions. In this case, thediffusivities, Taylor dispersion effect becomes very signifi-
dispersion process is controlled by the combination of molec- cant and neglecting it will lead to overestimated values for
ular diffusion and Taylor dispersion effe€ig. Icanddalso ~ Polymer phase diffusion coefficients. Vrentas and cowork-
show the effect of varying on the elution profiles. Assigning ~ €rs[5] proposed a modified IGC model to be used at very
higher values fop tend to broaden the elution profile while ~low polymer phase diffusion coefficients whgexceeds the
the symmetry and peak maximum position are unaffected. upper limit of 5 and the sensitivity of the usual IGC model
These results also show that for the safnealue, the ef-  is lost[9]. Fig. 4a shows a comparison between the present
fect of Taylor dispersion becomes significanyas reduced, model solutions at different values pf and those obtained
causing more dispersion in the axial direction and broader using Vrentag5] modified model where the axial diffusion
peaks. For a givem, as becomes smaller, Taylor disper- inthe gas phase is neglected. In the early model developed by
sion effect on the elution profiles increases and peaks becomd®awlisch and coworkef8] and the modified model proposed

broader. by Vrentas[5], Taylor dispersion effect was not taken into
The influence of/Rratio on the Taylor dispersion effect ~ consideration (i.ey* =y in [3] andy* =y =0in[3]). In the
and the elution profiles can be seen by compafiiag 1c for present modely* is equal to the sum of the non-dimensional

L/R= 100,000 andig. 2 for L/R=500,000. It is quite clear ~ axial molecular diffusiory and Taylor dispersion coefficient
fromFig. 1c andFig. 2thatincreasing/Rreduces Taylor dis- ~ Do. As y* decreases, the theoretical curves obtained using the
persion effect and the elution profiles obtained by the presentpresent model approach those of Vrerjfgsnodified model
model approach those obtained using the IGC model devel-(cf. Fig. 4a). To use the modification proposed by Vrerjfgs
oped in[3]. Results fronfigs. 1 and 2ndicate that the effect ~ Taylor dispersion should be made small or negligible. Taylor
of Taylor dispersion depends on the time the solute spends in

the stationary phase relative to the time it spends in the mo- @ =052
bile phase. Large values gfivery low Dp) means more time 4.501 L pe-w 7=28ES
spent by the solute in the stationary phase and therefore, the 4901

effect of Taylor dispersion on the elution profiles is less. The 350
partition coefficienK is proportional to the solute residence _3.00

5.00

time in the stationary phase. Increasing the valu& fill Y 250
increase solute residence time in the stationary phase relative 2.0+
to the time it spends in the gas phase and therefore, this will ~ 1.501 Bp=s

decrease the effect of Taylor dispersion. For a given solute  1.00
and stationary phase, a change in the column temperature os50{ A#*=3

or column diamete2R and/or film thickness will cause a 0.00 : ! ‘ ‘ — ,
change in the retention time of the solute and thus the value 0.00 050 1.00 150 92'00 250 300 350 400
of K [10].
5.00
9.00 4.50 ;:;:ozsm
8.00 BB* =003 ;:::ozr-:-w 4.00 | s LR =1.0E+05
700, L/R = 5.0E+05 350
6.00 4 B B* =004 3.00 1
5.00 - 5,5 =005 y Z'zz’
Y 4.00- 150 BB *=s
3.00 1.00
2.00 | os0| BEem —
1.001 0.00 . : - —_— .
0.00 | ‘ | , ‘ | 000 050 1.00 150 200 250 300 350 4.00
450 460 470 480 490 500 510 520 (b) 0

0
Fig. 3. Comparison of the elution profiles of the present (*) model and the
Fig. 2. Comparison of the elution profiles of the present (*) model and the usual IGC models at very low polymer-phase diffusion coefficients (i.e.,
usual IGC models for=0.52,y =2.8e-5, L/IR=500,000 and varioug large) for « =0.52,L/R=100,000 ag is reduced: (ay = 2.8e-5; and (b)
values. y=2.8e-7.
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12.00 0.50

;,:_= 0 [ref. 5]_ y* = 3.50E-06 ;== 17?) 0.45 | " ;:50.52
40,00 7" TT72E06 LR =1.0E+05 0.40 1 7=2.80E09
7* = 2.80E-05 - LR =1E+04
0.35 -
8.00 1 7 * = T.44E-05 030
y Y 005
6.00 | 025
0.20
4'00_ 0.15 b
0.10 -
2.00 0.05
0.00
0.00 , ) , , ‘ , , 0.00 2.00 4.00 6.00 8.00
090 095 100 105 110 115 120 1.25 1.30 o
(a) 6
Fig. 5. Effectof Kurtosis on the elution profiles at extremely low diffusivities
12.00 for «=0.52,L/R=10,000,y=2.8e-9 andB =5.
7* = 2.80E-06, y* =0 [ref. 5], 5.77E-07 ;:71:
10.00 3.0E-06 L/R = 5.0E+05 (33). Fora=0.52,L/R=10,000,y =2.8e-9, =5 and with
y* = 2.80E-05— L* being less than 1, criterion E€39) is not satisfied. The
8.00 two elution profiles calculated under this condition by using
y Ao (Eq.(33)) andy* (Eq.(42)) are shown irFig. 5. Itis clear
6.00 that there is a significant error in the elution profile calculated
001 usingy” when criterion Eq(39) is not met. This result can
' be explained by considering the moments of concentration
2001 distribution. Without going into details of moment analysis,
itis quiet clear that the contribution of the tetma3y/ x50
0.00 : , . ‘ ‘ ‘ will only appear when considering the fourth moment
090 095 000 1.05 140 145 120 125 1.30 ‘Kurtosis’), .e.0/00 [T x1 (32y/8%x1) = O n < 4).
o , ( ) /00 [ ] (825/9%x1) )

As shown by Chatwin[11], the eventual decay of the

Fig. 4. Comparison of the elution profiles of the present () model atverylow SKEWNESS in the case of dispersion in Poiseuille pipe flow

polymer-phase diffusion coefficients (i.e., lagjefor « =1, =7, and var- is at a ratet2. Therefore at large times, it is expected

ious values of/* with the modified mod€]5] for * = 0: (a)L/R=100,000; that the significant difference between elution curves at

and (b)L/R=500,000. extremely low diffusivites is mainly attributed to kurtosis
effect.

dispersion may significantly affect the elution profiles atlarge

B and smally values. Increasing thHe/R ratio from 100,000

in Fig. 4a to 500,000 inFig. 4b reduces Taylor dispersion 4. Conclusion

effect and Vrenta$s] modified model becomes applicable

over a wider range of* values. The results iRig. 4 clearly A general model has been developed which takes into ac-
demonstrate the effect of Taylor dispersion on the range of count the effect of Taylor dispersion on pulse dispersal in a
applicability of Vrentag5] modified model which is usually ~ typical IGC experiment. It can be used effectively to check

used wherg is large. the validity of assuming solute dispersion to be indepen-
dent of carrier gas velocity. The present model shows that
3.1. Kurtosis effect near the glass temperature of polymers, Taylor dispersion
) o . has a negligible effect over a wide rangeyofAt extremely
Inthe usual IGC experimeniesinthe range 1-10° low diffusivities and when criterion Eq39) s not satisfied,
orin special cases could be setto the order®{@rexample, | rosis effect becomes significant and the axial diffusion
_nltrogen as a carrier gas Wlth Butang asa solute)'. Thereforetarm given by Eq(33) should be used. In general, for high
in most practical cases in IGC, criterion E@9) is met.  ya|yes ofD, (low B), largerL/R ratios than previously an-

To the best of the authors knowledge, cases of extremelyyicinated should be used to make Taylor dispersion effect
low gas phase diffusivities below the practical range of IGC negligible.

(10~°-10"7) has not been studied as such cases could be rare

or do not exist. Mathematically speaking, at extremely low

values ofy and when criterion Eq39)is not met, the contri- 5. Nomenclature

bution from the secondtermin bracket IV of E§8)becomes

significant. As expected from E@5), extremely low diffu-

sivities will increase the value difi and in turn, will reduce Ag effective axial diffusion coefficient defined in (33)
the value of the effective axial diffusion coefficiei in Eq. bo a parameter defined {i34)
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a parameter defined {85) y dimensionless fluctuation of solute concentration
concentration of the solute in the gas phase 30 Laplace transform of —
concentration of the solute in the polymer phase  z axial coordinate

strength of input pulse

molecular diffusion coefficient Greek symbols

Taylor’s effective axial diffusion coefficient o dimensionless group defined in E45)

diffusion coefficient of the solute in the gas phase g dimensionless group defined in €d)

diffusion coefficient of the solute in the polymer fBm eigenvalues of'1(8,,) =0

phase 8 dirac delta function

a term defined ir{19) e dimensionless group (KR&tDg)

a term defined if23) y dimensionless group (gas phase diffusion coeffi-
Bessel function of the zero kind cient) defined in Eq(7)

Bessel function of the first kind y* effective axial diffusion coefficient defined in Eq.
partition coefficient (42)

column length n dimensionless radial group defined in E4)
dimensionless characteristic length defind by Taylor A dimensioless variable defined in E&3)

[8] e dimensionless radial co-ordinate in Kd)

2

[= 2/ J3(Bw)] -

Peclect number Ru/Dg)
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